Decoding Single Molecule Time Traces with Dynamic Disorder
نویسندگان
چکیده
منابع مشابه
Decoding Single Molecule Time Traces with Dynamic Disorder
Single molecule time trajectories of biomolecules provide glimpses into complex folding landscapes that are difficult to visualize using conventional ensemble measurements. Recent experiments and theoretical analyses have highlighted dynamic disorder in certain classes of biomolecules, whose dynamic pattern of conformational transitions is affected by slower transition dynamics of internal stat...
متن کاملReducing background contributions in fluorescence fluctuation time-traces for single-molecule measurements in solution.
We first report on the development of new microscope means that reduce background contributions in fluorescence fluctuation methods: i) excitation shutter, ii) electronic switches, and iii) early and late time-gating. The elements allow for measuring molecules at low analyte concentrations. We first found conditions of early and late time-gating with time-correlated single-photon counting that ...
متن کاملEfficient use of single molecule time traces to resolve kinetic rates, models and uncertainties.
Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings-such ...
متن کاملDiscriminating Traces with Time
What properties about the internals of a program explain the possible di↵erences in its overall running time for di↵erent inputs? In this paper, we propose a formal framework for considering this question we dub trace-set discrimination. We show that even though the algorithmic problem of computing maximum likelihood discriminants is NP-hard, approaches based on integer linear programming (ILP)...
متن کاملTime Resolved Single Molecule Spectroscopy
A new method based on the calculation of autocorrelation functions for spectra measured at a high acquisition rate is developed to study spectral dynamics of single molecules. The technique allows for spectroscopy with time resolutions down to the luminescence lifetime. The method is used to study spectral diffusion in two-photon excitation spectra of diphenyloctatetraene molecules doped in an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2016
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1005286